Atchison, L., Zhang, H., Cao, K., and Truskey, G.A. 2017. A Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome Using Human iPSC-derived Smooth Muscle Cells. Sci. Rep. 7(1): 8168. doi:10.1038/s41598-017-08632-4.

Barthélémy, F., Navarro, C., Fayek, R., Da Silva, N., Roll, P., Sigaudy, S., Oshima, J., Bonne, G., Papadopoulou-Legbelou, K., Evangeliou, A.E., Spilioti, M., Lemerrer, M., Wevers, R.A., Morava, E., Robaglia-Schlupp, A., Lévy, N., Bartoli, M., and De Sandre-Giovannoli, A. 2015. Truncated prelamin A expression in HGPS-like patients: a transcriptional study. Eur. J. Hum. Genet. 23(8): 1051–1061. doi:10.1038/ejhg.2014.239.

Blondel, S., Egesipe, A.-L., Picardi, P., Jaskowiak, A.-L., Notarnicola, M., Ragot, J., Tournois, J., Le Corf, A., Brinon, B., Poydenot, P., Georges, P., Navarro, C., Pitrez, P.R., Ferreira, L., Bollot, G., Bauvais, C., Laustriat, D., Mejat, A., De Sandre-Giovannoli, A., Levy, N., Bifulco, M., Peschanski, M., and Nissan, X. 2016. Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation. Cell Death Dis. 7(2): e2105. doi:10.1038/cddis.2015.374.

Buchwalter, A., and Hetzer, M.W. 2017. Nucleolar expansion and elevated protein translation in premature aging. Nat. Commun. 8(1): 328. doi:10.1038/s41467-017-00322-z.

Egesipe, A.-L., Blondel, S., Cicero, A.L., Jaskowiak, A.-L., Navarro, C., Sandre-Giovannoli, A.D., Levy, N., Peschanski, M., and Nissan, X. 2016. Metformin decreases progerin expression and alleviates pathological defects of Hutchinson–Gilford progeria syndrome cells. Npj Aging Mech. Dis. 2: 16026. doi:10.1038/npjamd.2016.26.

Eriksson, M., Brown, W.T., Gordon, L.B., Glynn, M.W., Singer, J., Scott, L., Erdos, M.R., Robbins, C.M., Moses, T.Y., Berglund, P., Dutra, A., Pak, E., Durkin, S., Csoka, A.B., Boehnke, M., Glover, T.W., and Collins, F.S. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423(6937): 293–298. doi:10.1038/nature01629.

Johmura, Y., Yamashita, E., Shimada, M., Nakanishi, K., and Nakanishi, M. 2016. Defective DNA repair increases susceptibility to senescence through extension of Chk1-mediated G2 checkpoint activation. Sci. Rep. 6: 31194. doi:10.1038/srep31194.

Liao, C.-Y., Anderson, S.S., Chicoine, N.H., Mayfield, J.R., Garrett, B.J., Kwok, C.S., Academia, E.C., Hsu, Y.-M., Miller, D.M., Bair, A.M., Wilson, J.A., Tannady, G., Stewart, E.M., Adamson, S.S., Wang, J., Withers, D.J., and Kennedy, B.K. 2017. Evidence that S6K1, but not 4E-BP1, mediates skeletal muscle pathology associated with loss of A-type lamins. Cell Discov. 3: 17039. doi:10.1038/celldisc.2017.39.

Liu, B., Wang, Z., Zhang, L., Ghosh, S., Zheng, H., and Zhou, Z. 2013. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat. Commun. 4: 1868. doi:10.1038/ncomms2885.

Liu, G.-H., Barkho, B.Z., Ruiz, S., Diep, D., Qu, J., Yang, S.-L., Panopoulos, A.D., Suzuki, K., Kurian, L., Walsh, C., Thompson, J., Boue, S., Fung, H.L., Sancho-Martinez, I., Zhang, K., Iii, J.Y., and Belmonte, J.C.I. 2011. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472(7342): 221–225. doi:10.1038/nature09879.

Mounkes, L.C., Kozlov, S., Hernandez, L., Sullivan, T., and Stewart, C.L. 2003. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423(6937): 298–301. doi:10.1038/nature01631.

Muhlinen, N., Horikawa, I., Alam, F., Isogaya, K., Lissa, D., Vojtesek, B., Lane, D.P., and Harris, C.C. 2018. p53 isoforms regulate premature aging in human cells. Oncogene: 1. doi:10.1038/s41388-017-0101-3.

Reference, G.H. (n.d.). Hutchinson-Gilford progeria syndrome. Available from [accessed 14 April 2018].

Reunert, J., Wentzell, R., Walter, M., Jakubiczka, S., Zenker, M., Brune, T., Rust, S., and Marquardt, T. 2012. Neonatal progeria: increased ratio of progerin to lamin A leads to progeria of the newborn. Eur. J. Hum. Genet. 20(9): 933–937. doi:10.1038/ejhg.2012.36.

Revêchon, G., Viceconte, N., McKenna, T., Carvajal, A.S., Vrtačnik, P., Stenvinkel, P., Lundgren, T., Hultenby, K., Franco, I., and Eriksson, M. 2017. Rare progerin-expressing preadipocytes and adipocytes contribute to tissue depletion over time. Sci. Rep. 7(1): 4405. doi:10.1038/s41598-017-04492-0.

Rodriguez, S., Coppedè, F., Sagelius, H., and Eriksson, M. 2009. Increased expression of the Hutchinson–Gilford progeria syndrome truncated lamin A transcript during cell aging. Eur. J. Hum. Genet. 17(7): 928–937. doi:10.1038/ejhg.2008.270.

Scaffidi, P., and Misteli, T. 2005. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat. Med. 11(4): 440–445. doi:10.1038/nm1204.

Wang, J., Robinson, J.F., O’Neil, C.H., Edwards, J.Y., Williams, C.M., Huff, M.W., Pickering, J.G., and Hegele, R.A. 2006. Ankyrin G overexpression in Hutchinson-Gilford progeria syndrome fibroblasts identified through biological filtering of expression profiles. J. Hum. Genet. 51(11): 934–942. doi:10.1007/s10038-006-0042-0.

Wood, A.M., Danielsen, J.M.R., Lucas, C.A., Rice, E.L., Scalzo, D., Shimi, T., Goldman, R.D., Smith, E.D., Le Beau, M.M., and Kosak, S.T. 2014. TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nat. Commun. 5: 5467. doi:10.1038/ncomms6467.


Leave a Reply

Your email address will not be published.